Factorisation properties of the strong product

نویسندگان

  • Gert de Cooman
  • Enrique Miranda
  • Marco Zaffalon
چکیده

We investigate a number of factorisation conditions in the framework of sets of probability measures, or coherent lower previsions, with finite referential spaces. We show that the so-called strong product constitutes one way to combine a number of marginal coherent lower previsions into an independent joint lower prevision, and we prove that under some conditions it is the only independent product that satisfies the factorisation conditions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability analysis of block LDLT factorisation for symmetric indefinite matrices

[September 5, 2008; revised December 6, 2009] We consider block LDLT factorisation for symmetric indefinite matrices in the form LDLT , where L is unit lower triangular and D is block diagonal with each diagonal block having dimension 1 or 2. The stability of this factorisation and its application to solving symmetric indefinite linear systems has been well studied. On the other hand, while all...

متن کامل

Independent Natural Extension

We introduce a general definition for the independence of a number of finite-valued variables, based on coherent lower previsions. Our definition has an epistemic flavour: it arises from personal judgements that a number of variables are irrelevant to one another. We show that a number of already existing notions, such as strong independence, satisfy our definition. Moreover, there always is a ...

متن کامل

Factorisation of analytic representations in the unit disk and number - phase statistics of a quantum harmonic oscillator

The inner-outer part factorisation of analytic representations in the unit disk is used for an effective characterisation of the number-phase statistical properties of a quantum harmonic oscillator. It is shown that the factorisation is intimately connected to the number-phase Weyl semigroup and its properties. In the Barut-Girardello analytic representation the factorisation is implemented as ...

متن کامل

Factorisation in Topological Monoids

The aim of this paper is sketch a theory of divisibility and factorisation in topological monoids, where finite products are replaced by convergent products. The algebraic case can then be viewed as the special case of discretely topologised topological monoids. In particular, we define the topological factorisation monoid, a generalisation of the factorisation monoid for algebraic monoids, and...

متن کامل

Probability Theory Exponential Functional of Lévy Processes: Generalized Weierstrass Products and Wiener-hopf Factorization

In this note, we state a representation of the Mellin transform of the exponential functional of Lévy processes in terms of generalized Weierstrass products. As by-product, we obtain a multiplicative Wiener-Hopf factorization generalizing previous results obtained by the authors in [14] as well as smoothness properties of its distribution. Résumé. Fonctionnelle exponentielle des processus de Lé...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010